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Effect of boundary conditions on diffusion in two-dimensional granular gases
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We analyze the influence of boundary conditions on numerical simulations of the diffusive properties of a
two-dimensional granular gas. We show in particular that periodic boundary conditions introduce unphysical
correlations in time that cause the coefficient of diffusion to be strongly dependent on the system size. On the
other hand, in large enough systems with hard walls at the boundaries, diffusion is found to be independent of
the system size. We compare the results obtained in this case with Langevin theory for an elastic gas. Good
agreement is found. We then calculate the relaxation time and the influence of the mass for a particle of radius
Rs in a sea of particles of radiusRb . As granular gases are dissipative, we also study the influence of an
external random force on the diffusion process in a forced dissipative system. In particular, we analyze
differences in the mean-square velocity and displacement between the elastic and inelastic cases.

DOI: 10.1103/PhysRevE.63.011301 PACS number~s!: 45.05.1x, 46.55.1d, 46.90.1s
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I. INTRODUCTION

The interactions among grains and between grains and
boundaries influence profoundly the macroscopic beha
of granular systems. To study such complex many-body s
tems, numerical simulations are frequently used where
of the most important ingredients are the collision laws
troduced to treat interactions@1#. For dilute assemblies o
grains one can use molecular-dynamics algorithms, wh
periodic boundary conditions are usually used. If the sys
is initially in a square box, a particle going out on the le
re-enters the system on the right. We will show below t
this kind of boundary condition modifies the general dyna
ics of the grains and introduces large correlations in tim
This changes the diffusive behavior of the grains. In t
paper, we propose an alternative approach to calculate
merically the coefficient of diffusion, accurately and wi
only very small finite-size effects. To validate our metho
we compare our results for an elastic gas with the Lange
theory.

As granular gases are dissipative it is necessary to
energy into the system to keep the particles agitated. To t
malize the system, we choose a random acceleration add
each grain at regular time step intervalsdt. Our final goal in
this paper is to study the dependence of the dynamic p
erties of the granular gas on the mode used to force
system. This work is a first step towards understanding
diffusion process in a binary system composed of two gr
sizes. The system considered here is composed of one
ticle s, of radiusRs in a sea of particles of radiusRb . The
particles are spheres constrained to move in a plane
which interact along their equators so that the system is t
dimensional~2D!. The system considered here is dilute w
a packing fraction of 30%. The simulations are done with
molecular-dynamics algorithms~time step driven@2# and
event driven@3#!.

To characterize the diffusive behavior, we focus on
mean-square displacement of thes particle. It is well known
that for a two-dimensional~2D! gas, the integral of the au
tocorrelation function does not converge@4#. This means that
1063-651X/2000/63~1!/011301~8!/$15.00 63 0113
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the mean-square displacement does not vary linearly w
time. Therefore, strictly speaking, we cannot define a dif
sion coefficient in 2D. However, we show that in a limite
range of time, in the stationary state, the mean-square
placement can be approximated by the linear function:

^@rW~ t1t0!2rW~ t0!#2&}4Dt, ~1.1!

where D can be interpreted as a diffusion coefficient. A
quantities are expressed in arbitrary units.

II. CHOICE OF BOUNDARY CONDITIONS

In this section we show that periodic boundary conditio
introduce strong correlations and therefore alter the diffus
process.

A. Periodic boundary conditions

Consistent with common practice, we have used perio
boundary conditions to simulate a system of identi
spheresRs5Rb50.5. Initially the particles are placed ran
domly in a square box of lengthL. The number of particles is
calculated for each system depending onL, Rs , and the
packing fraction. Periodic boundary conditions are applied
both directions. In this case, for elastic or forced gases~Sec.
IV !, we have observed a strong dependence ofD ~or of the
mean-square displacement! on the system size.

In Fig. 1, we have plotted the mean-square displacem

^@rW(t1t0)2rW(t0)#2& @Fig. 1~a!# and *C(t)dt @Fig. 1~b!#,
both calculated in the stationary state, as function oft. C(t)
is the normalized autocorrelation function:

C~ t !5
^vW ~ t01t !vW ~ t0!&2^vW ~ t0!&2

^vW ~ t0!2&2^vW ~ t0!&2
. ~2.1!

First, we note that the mean-square displacement, at l
time, varies linearly with time as expected but the slope
the curve, i.e., the diffusion coefficient, increases with s
tem size. We show, in the inset to Fig. 1~a!, that this depen-
©2000 The American Physical Society01-1
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C. HENRIQUE, G. BATROUNI, AND D. BIDEAU PHYSICAL REVIEW E63 011301
dence onL appears already at short time, when^@r 2(t1t0)
2rW(t0)#2&!L2. This feature can be also observed
*0

t;`C(t)dt, which is proportional to the diffusion coeffi
cient. Similarly, we observe that the relaxation timet r @i.e.,
C(t r).0# increases with size. In summary, the bigger t
system is, the longer the characteristic timet r and the larger
the diffusion coefficientD are. We recall that such depen
dence has been observed by Alderet al. @5#. They proposed
the following law for the dependence ofD on the number of
particles,N:

D~N!5D~`!~122/N!. ~2.2!

However, their numerical simulations do not support t
conjecture@6# since they fail to observe any saturation ofD
for large systems. In addition, they found strong correlatio
in the velocity field characterized by the presence of vor
flow pattern at the microscopic scale. Our results confirm

FIG. 1. Dependence of the mean-square displacement on

system size.~a! ^@rW(t1t0)2rW(t0)#2& as a function oft. From bot-
tom to top the system size is 20, 40, 30, 50, and 60.~b! Integral of
C(t) as a function oft for the same system. From bottom to top t
system size is 20, 40, 30, 50, and 60, respectively.
01130
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lack of convergence forD with system size. In addition, this
variation ofD with L is also observed in the case of inelas
collisions.

Another important remark is in order. If the system si
is, for example, 60~with 1400 particles of radiusR50.5),
the characteristic timet r is found to be around 20, which
represents about 200 collisions for a particle. This means
a particle needs to undergo 200 collisions to lose comple
the memory of its past. According to the Boltzmann theo
this time should be limited to only a few collisions. Ther
fore we cannot accept this result as a valid macroscopic
scription of a gas. It is worth noting that the same results
found for both, the time step driven and the event driv
algorithms.

We now discuss some points helpful for understand
the problem. Initially, each particle has a random veloc
drawn from a Maxwellian distribution. We shift the linea
and angular momenta so that the system has zero cente
mass momentum and zero angular momentum relative to
center-of-mass. We find, however, that, although the sys
keeps its center-of-mass at rest throughout the simulat
the system is no longer isotropic, its moment of inertia b
coming that of an ellipsoid. LetI (t) be the inertia matrix of
the system. Its two eigenvaluesln andlp are related via

ln1lp5m(
k51

N

r k
2~ t !, ~2.3!

where the sum is over allN particles each of massm. Fol-
lowing ln and lp in time shows that the system takes
ellipsoidal form (ln,lp). We have found, as well, an an
isotropy in the diffusion tensorD̂(t) defined fromI (t) as

D̂~ t !5
1

Nm

I ~ t1dt !2I ~ t !

dt
. ~2.4!

As example we show, in Fig. 2 the two eigenvaluesD1 and
D2 of D̂ as functions oft for a particular periodic system

he

FIG. 2. D1 andD2 vs time for a typical monodisperse case wi
periodic boundaries.
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EFFECT OF BOUNDARY CONDITIONS ON DIFFUSION . . . PHYSICAL REVIEW E63 011301
Clearly, D1 and D2 are very different for allt. For all sys-
tems we studied, we found two different diffusion coef
cients, which depend strongly the system size. We were
able to find how these values scale withL.

In addition, we have found that as the system evolve
will start to rotate even though the initial condition is rot
tion free. This rotation is put in evidence by calculating t
two eigenvectorsuW n anduW p of I (t). These two~perpendicu-
lar! vectors rotate in space and, most importantly, they k
the same direction of rotation for a long time (;t r). We
suspect that this rotation induces an anomalous temporal
relation of velocities. One should point out that this rotati
phenomenon seems similar to that observed by Alderet al.
in their simulations with similar periodic boundary cond
tions.

The reason the system starts to rotate is as follows:
square geometry of the system does not permit the conse
tion of distances between two particles when the system
rotating. In Fig. 3 we show that after a rotation ofu the
distancedi j between particlesi and j can be drastically
changed by the rotation if one of them goes through
boundary. Because the distance between particles is not
served by rotation, the interaction potential used in the al
rithm, which depends only on the relative positions of p
ticles di j , is itself not invariant under rotation and so th
angular momentum of the system is not conserved. Ef
tively the total angular momentum is fluctuating as one c
see in Fig. 4. Every time a particle goes through the bou
ary, its angular momentum,l z

i , changes sign. Consequentl
the change in angular momentum isDLz522l z

i . DLz is
always proportional toL ~the system size! and the total num-
ber of particlesN, is proportional toL2. However it appears
that the fluctuations ofLz get bigger with system size~see
Fig. 4!.

The use of periodic boundary conditions amounts to r
licating the system on a square lattice. There are, theref
several identical systems that interact through the bou
aries. The rotation observed in our system is then extende
all these systems and can create some shear stress, d
frustration of rotation, between neighboring systems.

These boundary conditions can have other conseque
on the dynamics of granular systems. For example, du
the simulation of a cooling state the system evolves towa
clusters@7# whose orientation depends on the type of bou

FIG. 3. Illustration of the nonconservation of the distance
tween two particles.
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ary conditions@8#. In other similar simulations@9# it was
shown that there exist large spatial correlations between
ticles where the velocities stay correlated over a distanc
aboutL/2.

B. Reflecting boundaries

In the case of reflecting boundaries the system is rotat
ally invariant leading to better behavior of the mean-squ
displacement. However, in this case, the mean-square
placement is limited at long time by the system size.
circumvent this problem, we proceed as follows. The t
particles is initially put at the center of system att50. The
evolution of the position and velocity of this test particle a
then followed until it reaches the boundary of the system
time tw . We then repeat this many times collecting statist
for many test particles with different initial velocities.

The mean-square displacement is calculated over
such trajectories and limited to time smaller than the smal
tw . In this case, as one can see in Fig. 5, there is no de
dence of the mean-square displacement on the system
Therefore, we can now trust the results of our numeri
simulations.

We recall that the integral of the velocity correlation fun
tion does not converge in 2D. However, in a limited range
time ~see Fig. 5!, the quantity^@rW(t1t0)2rW(t0)#2& can be
approximated by a straight line andD calculated according
to Eq.~1.1!. Therefore, the estimate ofD with this method is
an approximation.

III. DIFFUSION IN AN ELASTIC GAS

We first validate our algorithm using reflecting boun
aries for an elastic gas~i.e., where the collision betwee
particles are elastic!. Then, we compare the numerical resu
with those given by the Langevin equation. Indeed, n
equilibrium, the dynamics ofs can be described approx
mately, by a Langevin equation:

-

FIG. 4. Total angular momentumLz(t) vs t for two system
lengths and the same particle density.~Full line!: L520, ~dashed
line!: L550.
1-3
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C. HENRIQUE, G. BATROUNI, AND D. BIDEAU PHYSICAL REVIEW E63 011301
dv i~ t !

dt
52gv i~ t !1G i~ t !,

~3.1!
^G i~ t !G j~ t8!&5qd i , jd~ t2t8!,

where i denotes the two directionx and y. Integrating Eq.
~3.1!, the dependence of the mean-square velocity on tim
simply given by

v2~ t !5v2~0!e22gt1
q

g
~12e22gt!. ~3.2!

In this paperv denotes the instantaneous velocity of o
particle andv2 the mean-square velocity averaged over
different s trajectories. We can rewrite Eq.~3.2! using the
mean square velocity in the equilibrium statev2(`)5q/g:

v2~ t !5v2~`!1@v2~0!2v2~`!#e22gt, ~3.3!

where 1/g corresponds to the relaxation time.
For example, ifRs@Rb or, equivalently,ms@mb (ms,b is

the mass of the particle of radiusRs,b) ~see Fig. 6!, 1/g is
very large: the collision ofs with a light particleb will not
affect strongly the velocity ofs. So a great number of colli
sions is needed befores reaches its equilibrium state. Know

FIG. 5. ^@rW(t)2rW(0)#2& as function oft using reflecting bound-
aries. Superposed~as in Fig. 1! are the results for system sizes: 2
30, 40, 50, and 60.

FIG. 6. A particle of massms colliding with a particle of mass
mb : definition of the anglesu andw.
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ing the total kinetic energy of the systemEk
tot ~which is given

by the initial velocity of each particle!, we can easily calcu-
late the square velocity in the equilibrium statev2(`)
5q/g ~using the Boltzmann distribution law for elast
gases!. Using the simulations to calculatev2(t) for the s
particles for initial conditions which are very different from
the stationary state, i.e.,v2(0)Þv2(`) and comparing with
Eq. ~3.3!, we obtain the relaxation time for a big~heavy!
particle~Fig. 7!. Note that we are looking for agreement ne
the equilibrium state, where Eq.~3.1! is valid. Indeed the
dissipation termg must depend on both velocitiesvs

2 andvb
2 ,

as we will show.
Equation~3.1! also gives the mean-square displacem

as a function of time,

^@rW~ t !2rW~0!#2&5S v0
22

q

g D
3

~12e2gt!2

g2
1

2q

g2
t2

2q

g3
~12e2gt!.

~3.4!

Comparing Eq.~3.4! and Eq.~1.1! at large time, the coeffi-
cient of diffusion is seen to beD5v2(`)/2g. In Fig. 7, we
compare the theoretical mean square displacement, Eq.~3.4!,
with the numerical one, obtained for the caseRs53Rb . Note
that in Eq.~3.4! all the parameters are known. Clearly, th
agreement is very good. This confirms that even for a la
test particle, the motion is well described by the simp
Langevin equation. This observation, while reasonable
not trivial since the limited size of our system and the rad
of the particles are comparable to the mean-free-path.

We can now present a theoretical calculation ofg, which
describes dissipation in the Langevin equation for all pa
(Rs ,Rb). This will allow us to compare the theoretical value
with the numerical ones as a function ofRs .

The value ofg depends on both velocities,vs andvb . To
estimate theoretically the value ofg, we consider the devia
tion, due to a collision, of the particles moving atvs in the
x direction. The dissipative term2gvW i appearing in Eq.
~3.1!, in thex direction, can therefore be formally written a

2gvs5K vW s8•xW2vs

vs
L vcvs , ~3.5!

wherevW s8 is the velocity after the collision andvc is the rate
of collision. The symbol̂ & in Eq. ~3.5! corresponds to the
average over all collisions between thes particle and theb
particles. To calculate the different terms, we proceed as
lows. We consider the collision ofs with a particleb moving
at a velocity vW b . The collision is characterized by tw
angles:u, the angle between (rWs2rWb) and thex axis, andw

the angle betweenvW b and thex axis. Then, for such a colli-
sion, illustrated in Fig. 6, we can calculate theoretica

vW s8(u,w), the final velocity of thes particle.
1-4
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For elastic collisions, the projection ofvW s8(u,w) on thexW

direction is given by

vW s8~u,w!•xW5
ms2mb

ms1mb
vs cos2~u!

1
2mb

ms1mb
vb cos~u!cos~u2w!

1vs sin2~u!, ~3.6!

with the collision taking place only if

vs cos~u!2vb cos~u2w!.0. ~3.7!

Integrating overw and taking into account Eq.~3.7! we can
write

FIG. 7. Comparison between numerical results and Lange
approximation.Rs51.5 andRb50.5. ~a! Dependence of the mean
squared velocity ont; s: numerical result, full line: fit usinge22gt

according to Eq.~3.2!. ~b! The mean-squared displacement,s: nu-
merical result, full line: Theoretical prediction according to E
~3.3! using forg the value obtained from~a!.
01130
^vW s8~u!•xW &w

5

E
0

2p

Ev@vs cos~u!2vb cos~u2w!#vW s8~u,w!xWdw

E
0

2p

Ev@vs cos~u!2vb cos~u2w!#

,

~3.8!

whereEv is the Heavyside function. We found for Eq.~3.8!
two solutions depending on the velocities. Ifvs,vb , we
have

^vW s8~u!•xW &w5
ms2mb

ms1mb
vs cos2~u!1vs sin2~u!

2
2mbvb cos~u!sin~up!

~p2up!~ms1mb!
~3.9!

for all u (0<u<p) and with up5cos21@vscos(u)/vb#. For
the second case,vs.vb , there is a critical angle,uc
5cos21(vb /vs), such that forp2uc,u<p1uc the colli-
sion does not take place. In this case the solution of Eq.~3.8!
is

^vW s8~u!•xW &w5
ms2mb

ms1mb
vs cos2~u!

1vs sin2~u! for 0<u,uc ,

^vW s8~u!•xW &w5
ms2mb

ms1mb
vs cos2~u!1vs sin2~u!

2
2mbvb cos~u!sin~up!

~p2up!~ms1mb!

for uc<u<p2uc . ~3.10!

We call n(u) the mean relative loss of velocity,

n~u!5
^vW s8~u!•xW &w2vs

vs
,

averaging only over the anglew. In Fig. 8 we shown(u) for
the particular caseRs50.25 andRb50.5, which means tha
vs.vb . Note that in our calculation, the termsvs and vb
correspond to the averaged values with respect to the ap
priate Maxwellian distribution. To obtain the mean valueñ
of n, we average by integrating numerically overu.

To conclude the calculation of the dissipative ter
2gvs , we have to estimate, using Eq.~3.5!, the collision
frequency that also depends on the velocities of the two p
ticles. A similar calculation ofn can be done@10#. In the
stationary state, wherevs

2 andvb
2 are constant and the distr

butions of the velocities are Maxwellian, one can use@11#

vc5xAp~Rs1Rb!dAvs
21vb

2, ~3.11!

whered is the density ofb particles andx is a correction
factor, which corresponds to the local radial distributi
around thes particle.

in
1-5
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In Fig. 9, we compare, for different values ofRs , the
diffusion coefficient found from the simulation with the th
oretical value,v2(`)/2g, predicted by the Langevin equatio
combined with our analytical calculation ofg. The theoreti-
cal calculation ofg agrees very well with the simulatio
results. We recall that 1/g corresponds to the characterist
time for the diffusive behavior. It is important to notice th
g can be approximated byvc only when Rs!Rb . Effec-
tively, the calculation forms;0 givesñ521. Largers par-
ticles need to suffer more than one collision to lose mem
of their previous condition. Forms;`, ñ is found equal to
zero. Using these methods, we find for the elastic mono
perse case (Rs5Rb) that relaxation~decorrelation! takes
place after about three collisions.

The agreement between numerical results and theore
predictions allows us to confirm our numerical algorithm.

IV. FORCED SYSTEM

In a real granular system dissipation occurs through c
lisions, a fact that must be taken into account. Experime
mechanical properties of grains~restitution and friction co-
efficients! and collision laws@12# are used in our simula
tions. The collisions between grains and the walls are trea
with the same inelastic properties. Due to dissipation,
need to feed energy into the system to maintain the parti
agitated. To accomplish this, we choose random hea
@13,14#: At every time stepdt we give a random accelera
tion, h i(t), in both spatial directions to each particle. T
equation of motion can now be written formally as

m
dv i

dt
5Fi

c1Fi
t ,

~4.1!

^Fi
t~ t !F j

t~ t8!&5m2d i , jd~ t2t8!h0
2 .

FIG. 8. n(u), the mean relative loss of energy per collision
the u direction, forRs50.25, Rb50.5, andvb

2525.
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c is the collision force acting on a particle of massm. We

chose the random acceleration,Fi
t/m, to be independent o

the mass of the particle. It is given by a Gaussian noise
varianceh0

2.
At long time, the loss of energy due to collisions and t

gain due toFt balance each other such that the syst
reaches a steady state out of equilibrium. It can be sho
@15# that the velocity distribution in this steady state is w
described by a Maxwellian.

A. Stationary state

In the stationary state energy loss and gain balance
actly. The energy loss per unit timeG for the s particle, can
be expressed as

G5P~ms ,mb!vcmsv
2, ~4.2!

whereP(ms ,mb) is the relative energy loss of particles due
to collisions. Clearly as forñ, G must depend on the mas
of the particle and on the two velocitiesvs andvb . On the
other hand, the gain of energy due the stochastic force i

1
2 ms@v2~ t1dt !2v2~ t !#5msh0

2dt. ~4.3!

In the steady state of the monodisperse system@R5Rs
5Rb , andv2(`)5constant#, we find, using Eq.~3.11!, the
following scaling forv2(`):

v2~`!}~h0
2!2/3,

~4.4!
v2~`!}tc .

We checked these two scaling laws numerically~see Fig. 10!
and obtained the correct exponent 2/3 for the various coe
cients of restitution used in the contact laws. We have a
verified the predicted dependence ontc for different values

FIG. 9. Coefficient of diffusion for different values ofRs . Rb

50.5. s: Numerical values obtained by simulation. Full line: th
oretical values calculated fromv2(`)/2g.
1-6
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EFFECT OF BOUNDARY CONDITIONS ON DIFFUSION . . . PHYSICAL REVIEW E63 011301
of R. The good agreement between theory and simula
indicates that we can describe the system by macrosc
continuous equations ifdt!tc . As we explain elsewhere
@16#, the termP(m,m) ~in the monodisperse case! is inde-
pendent of mass and velocity, because all particles are i
tical. This value ofP(m,m) was found equal approximatel
to 0.145 for the mechanical properties corresponding
acetate spheres@12#. We can then, in the case of a monod
perse system, predict the dependence of the mean-squar
locity on the various parameters and, consequently, cha
terize the stationary state. For the bidisperse case,
calculation is more complicated. Indeed the loss of ene
depends on the two types of colliding particles and also
the different coefficients of restitution and friction introduc
in the collision laws. As we show@16# the dependence o
P(ms ,mb) on vs /vb is not trivial.

In this paper we limit ourselves to the effect of the the
malization mode~or random force! on the diffusion coeffi-
cient. To this end, we will compare in the following sectio
the simulation results forD with v2(`)/2g from the Lange-
vin equation.

FIG. 10. ~a! v2(`) vs h0
2 for different coefficients of restitution

s: en50.87, es50.4, m50.25; n: en50.4, es50.4, m50.25.
~b! v2(`) vs the mean time between collisionstc .
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B. Diffusion of one particle

To estimateD, we use reflecting boundaries and the sa
method explained in Sec. II B. We consider here the bid
perse case~a single particle of radiusRs in a sea of particles
of radiusRb). As we have not yet found a theoretical expre
sion for P(ms ,mb) for this case, we use for the mean-squa
velocities the values obtained from the simulations, wh
are shown in Fig. 11~a!. Note thath0

2 has been chosen suc
that the value ofvb

2 is the same as in the previous sectio
We see thatv2(`) first decreases withRs for Rs,Rb but
then increases whenRs.Rb . Because of dissipation and th
random acceleration, the repartition of the energy with
mass is no longer proportional to 1/ms . In all cases it is
possible to calculate the mean collision frequency fors with
Eq. ~3.11! and the associatedg value with Eq.~3.5!. We can
then calculate the relaxation timet r for all couples (Rs ,Rb)
used. In Fig. 11~b! we show the diffusion coefficientD, and

FIG. 11. ~a! v2(`) vs Rs (Rb50.5). ~b! Coefficient of diffusion
D as a function ofRs . s: Numerical values obtained from simula
tion. Full line: corresponding values given byv2(`)/2g. The insert
showst r vs Rs .
1-7
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the relaxation timet r—in the inset—as functions ofRs . The
behavior ofv2(`) strongly modifies the curve oft r and D
versusRs compared to the elastic case. Note that the rel
ation time represented in Fig. 11 clearly increases asRs in-
creases.

We have seen in the elastic case thatD5v2/2g. In Fig.
11~b!, we show the numerical results forD as a function of
Rs and the corresponding values given byv2/2g. One can
see clearly that the external noise modifies the dynamic
the granular gas and in particular the diffusion coefficient,D.
The numerical value ofD is found to be larger than tha
obtained by the corresponding random walk. Indeed, at s
time, due to the random force,v2(t) is not constant. Between
two collisionsv2(t) increases linearly witht. Starting with
the equation of motion of particles ~between two collisions!,

dv i~ t !

dt
5h i~ t !, ~4.5!

and with the initial conditionsxi(0) andv i(0), we cancal-
culate mean-square displacement

^@xi~ t !2xi~0!#2&

5K E
t150

t

dt1S v i~0!1E
0

t1
h i~ t18!dt18D

3E
t250

t

dt2S v i~0!1E
0

t2
h i~ t28!dt28D L . ~4.6!

In two dimensions, this yields for the interval between tw
collisions

^@r ~ t !2r ~0!#2&5v2~0!t21
2h0

2

3
t3. ~4.7!

On the other hand, in the case of a random walk~or elastic
collisions! the mean-square displacement at short time sc
as t2. This difference explains the disagreement betweeD
and v2(`)/2g. As the velocity changes between two col
sions the probability of collision is increasing with time to
The calculation of the coefficient of diffusion is not easy
this case, due to the correlation between the velocity and
-

y

,

01130
-

of

rt

es

he

probability of collision@see Eq.~3.11!#. For very small par-
ticles, if one approaches relaxation by the time of a n
collision, i.e., ñ.21, this calculation should be possibl
Indeed we can assume that the velocities before and af
collision are not correlated and have the same distribu
~molecular chaos!. We can then compute the mean-squa
displacement, knowing the dependence of the collision pr
ability on the velocity@10#. With this assumption we im-
prove the estimate ofD for the smallestRs . But for bigger
particles we have seen that the velocities stay correlated
many collisions and we can no longer use molecular cha

V. CONCLUSIONS

We have presented here some general results abou
diffusion process in an agitated granular gas. We fi
showed that the boundary conditions used in the simulati
are of crucial importance. Indeed, periodic boundary con
tions introduce artificially strong temporal correlations th
alter the macroscopic properties of the gas. If we ensure
no correlations are induced by the algorithm, for example,
using reflecting boundaries, the numerical results obtai
for an elastic gas can be described very well by a Lange
equation. We have presented a theoretical calculation of
relaxation time that allows us to predict the diffusion coef
cient in all cases studied. This was nota priori intuitive since
the radius of the particles is of the order of the mean-fr
path. Finally we have analyzed the influence of unifo
heating ~a random acceleration! on dissipative gases. W
have shown that heating influences the dynamics at s
time. This is evident through the value of the diffusion coe
ficient, which is different from that expected from the Lang
vin description. We are now applying with success the
results to the diffusion process in a granular mixture cons
ing of two type of grains~differing by mass or size! in equal
proportion.
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