PHYSICAL REVIEW E, VOLUME 63, 011301
Effect of boundary conditions on diffusion in two-dimensional granular gases
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We analyze the influence of boundary conditions on numerical simulations of the diffusive properties of a
two-dimensional granular gas. We show in particular that periodic boundary conditions introduce unphysical
correlations in time that cause the coefficient of diffusion to be strongly dependent on the system size. On the
other hand, in large enough systems with hard walls at the boundaries, diffusion is found to be independent of
the system size. We compare the results obtained in this case with Langevin theory for an elastic gas. Good
agreement is found. We then calculate the relaxation time and the influence of the mass for a particle of radius
Rs in a sea of particles of radiuR,. As granular gases are dissipative, we also study the influence of an
external random force on the diffusion process in a forced dissipative system. In particular, we analyze
differences in the mean-square velocity and displacement between the elastic and inelastic cases.
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[. INTRODUCTION the mean-square displacement does not vary linearly with
time. Therefore, strictly speaking, we cannot define a diffu-
The interactions among grains and between grains and trgion coefficient in 2D. However, we show that in a limited
boundaries influence profoundly the macroscopic behaviorange of time, in the stationary state, the mean-square dis-
of granular systems. To study such complex many-body sysPlacement can be approximated by the linear function:
tems, numerical simulations are frequently used where one . .
of the most important ingredients are the collision laws in- ([r(t+tg)—r(tg)]?)c4Dt, (11
troduced to treat interactiofd]. For dilute assemblies of
grains one can use molecular-dynamics algorithms, wher@here D can be interpreted as a diffusion coefficient. All
periodic boundary conditions are usually used. If the systenfluantities are expressed in arbitrary units.
is initially in a square box, a particle going out on the left
re-enters the system on the right. We will show below that Il. CHOICE OF BOUNDARY CONDITIONS

this kind of boundary condition modifies the general dynam- ) _ o .
ics of the grains and introduces large correlations in time, !N this section we show that periodic boundary conditions
This changes the diffusive behavior of the grains. In thisintroduce strong correlations and therefore alter the diffusion

paper, we propose an alternative approach to calculate nifOCess.
merically the coefficient of diffusion, accurately and with
only very small finite-size effects. To validate our methods, A. Periodic boundary conditions
we compare our results for an elastic gas with the Langevin  ~q«ictant with common practice, we have used periodic
theory. T boundary conditions to simulate a system of identical

As granular gases are dissipative it is necessary to fee&)heresRS: R,=0.5. Initially the particles are placed ran-
energy into the system to keep the particles agitated. To thefgo 1y in 5 square box of length The number of particles is
malize the system, we choose a random acceleration addedéglculated for each system depending lon R., and the

S

each grain at regular time step intervells Our final goal in = 5 c\ing fraction. Periodic boundary conditions are applied in
this paper is to study the dependence of the dynamic proflsq, girections. In this case, for elastic or forced gaSes.
erties of the granular gas on the mode used to force thR/) we have observed a strong dependencl br of the
system. This work is a first step towards understanding th?ne:’;m-square displacemgmn the system size.

diffusion process in a binary system composed of two grain In Fig. 1, we have plotted the mean-square displacement

sizes. The system considered here is composed of one p?T_F(t+to)—F(t0)]2) [Fig. 1(a] and [C(t)dt [Fig. 1(b)]

ticle s, of radiusRg in a sea of particles of radiuR,. The th caleulated in the stati tat function. &i(t
particles are spheres constrained to move in a plane arRJO caiculated in the stationary staté, as functio (t)
IS the normalized autocorrelation function:

which interact along their equators so that the system is two-=
dimensional2D). The system considered here is dilute with - - - 2
a packing fraction of 30%. The simulations are done with the C(t)= <U(t0jt)v(t°)>:<v(t°)> _
molecular-dynamics algorithm&ime step driven[2] and (v(te)?)—(v(tg))?
event driver 3]).

To characterize the diffusive behavior, we focus on theFirst, we note that the mean-square displacement, at large
mean-square displacement of thparticle. It is well known time, varies linearly with time as expected but the slope of
that for a two-dimensional2D) gas, the integral of the au- the curve, i.e., the diffusion coefficient, increases with sys-
tocorrelation function does not converigl. This means that tem size. We show, in the inset to Figal, that this depen-

(2.1
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FIG. 2. D, andD, vs time for a typical monodisperse case with
periodic boundaries.

lack of convergence fdD with system size. In addition, this
variation of D with L is also observed in the case of inelastic
collisions.

5 Another important remark is in order. If the system size
go is, for example, 6Qwith 1400 particles of radiuRk=0.5),
the characteristic time, is found to be around 20, which
represents about 200 collisions for a particle. This means that
a particle needs to undergo 200 collisions to lose completely
the memory of its past. According to the Boltzmann theory
this time should be limited to only a few collisions. There-
0.4 s : : ‘ fore we cannot accept this result as a valid macroscopic de-
) 0 20 40 60 80 100 scription of a gas. It is worth noting that the same results are
T found for both, the time step driven and the event driven
FIG. 1. Dependence of the mean-square displacement on tr@lgorithms.
system size(a) ([r(t+to) —r(to)]?) as a function ot. From bot- We now discuss some points helpful for understanding

tom to top the system size is 20, 40, 30, 50, and(BPIntegral of ~ the problem. Initially, each particle has a random velocity
C(t) as a function ot for the same system. From bottom to top the drawn from a Maxwellian distribution. We shift the linear
system size is 20, 40, 30, 50, and 60, respectively. and angular momenta so that the system has zero center-of-
mass momentum and zero angular momentum relative to the
~f(t)])<L2. This feature can be also observed in keeps its center-of-mass at rest throughout the simulation,
5~°°C(t)dt, which is proportional to the diffusion coeffi- the system is no longer isotropic, its moment of inertia be-

cient. Similarly, we observe that the relaxation timeli.e., coming that of an ellipsoid. Le(t) be the inertia matrix of

C(7,)=0] increases with size. In summary, the bigger thethe system. Its two eigenvaluag and,, are related via

system is, the longer the characteristic timeand the larger N
the diffusion coefficientD are. We recall that such depen- )\n+)\p:m2 rg(t), (2.3
dence has been observed by Aldeml. [5]. They proposed k=1

the following law for the dependence Bfon the number of where the sum is over all particles each of mass. Fol-

particles N: lowing A, and \, in time shows that the system takes an
ellipsoidal form (,<\,). We have found, as well, an an-
D(N)=D()(1=2/N). (2.2 isotropy in the diffusion tensdd(t) defined froml(t) as
However, their numerical simulations do not support this |§(t)=i I(t+6)—1(1) (2.4)

conjecturg 6] since they fail to observe any saturation»f Nm ot
for large systems. In addition, they found strong correlations o )
in the velocity field characterized by the presence of vortexS €xample we show, in Fig. 2 the two eigenvalizsand

flow pattern at the microscopic scale. Our results confirm thé®, of D as functions oft for a particular periodic system.
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FIG. 3. lllustration of the nonconservation of the distance be-
tween two particles. —-20000
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Clearly,D;, andD, are very different for alt. For all sys- t
tems we studied, we found two different diffusion coeffi- FIG. 4. Total angular momentura,(t) vs t for two system
cients, which depend strongly the system size. We were ndéngths and the same particle densitiyull line): L= 20, (dashed
able to find how these values scale with line): L=50.

In addition, we have found that as the system evolves it

will start to rotate even though the initial condition is rota- ary conditions[8]. In other similar simulationg9] it was
tion free. This rotation is put in evidence by calculating thesphown that there exist large spatial correlations between par-

two eigenvectorsi, andu, of I(t). These two(perpendicu- ticles where the velocities stay correlated over a distance of
lar) vectors rotate in space and, most importantly, they keeppoutL /2.

the same direction of rotation for a long time-¢,). We
suspect that this rotation induces an anomalous temporal cor-
relation of velocities. One should point out that this rotation B. Reflecting boundaries
phenomenon seems similar to that observed by Aidel. . . : .
in their simulations with similar periodic boundary condi- In, the case of rgflectlng boundaneg the system is rotation-
tions. ally invariant leading to better behavior of the mean-square
The reason the system starts to rotate is as follows: Theisplacement. However, in this case, the mean-square dis-
square geometry of the system does not permit the conservRlacement is limited at long time by the system size. To
tion of distances between two particles when the system i§ircumvent this problem, we proceed as follows. The test
rotating. In Fig. 3 we show that after a rotation 6fthe  particlesis initially put at the center of system &t0. The
distanced;; between particles and j can be drastically evolution of the position and velocity of this test particle are
changed by the rotation if one of them goes through théhen followed until it reaches the boundary of the system in
boundary. Because the distance between particles is not cotime t,,. We then repeat this many times collecting statistics
served by rotation, the interaction potential used in the algofor many test particles with different initial velocities.
rithm, which depends only on the relative positions of par- The mean-square displacement is calculated over 500
ticles d;; , is itself not invariant under rotation and so the such trajectories and limited to time smaller than the smallest
angular momentum of the system is not conserved. Effect,, . In this case, as one can see in Fig. 5, there is no depen-
tively the total angular momentum is fluctuating as one carjence of the mean-square displacement on the system size.
see in Fig. 4. Every time a particle goes through the boundTherefore, we can now trust the results of our numerical
ary, its angular momentunh,, changes sign. Consequently, simulations.
the change in angular momentum Ad ,=—2l}. AL, is We recall that the integral of the velocity correlation func-
always proportional th. (the system sizeand the total num- tion does not converge in 2D. However, in a limited range of
ber of particlesN, is proportional to 2. However it appears time (see Fig. 5, the quantity([r(t+t,) —r(ts)]?) can be
that the fluctuations ok ; get bigger with system size&see  approximated by a straight line ari calculated according

Fig. 4). o . to Eq.(1.1). Therefore, the estimate &f with this method is
The use of periodic boundary conditions amounts to repyn approximation.

licating the system on a square lattice. There are, therefore,
several identical systems that interact through the bound-
aries. The rotation observed in our system is then extended to
all these systems and can create some shear stress, due tdNe first validate our algorithm using reflecting bound-
frustration of rotation, between neighboring systems. aries for an elastic ga§.e., where the collision between

These boundary conditions can have other consequencearticles are elasticThen, we compare the numerical results
on the dynamics of granular systems. For example, duringvith those given by the Langevin equation. Indeed, near
the simulation of a cooling state the system evolves towardsquilibrium, the dynamics o6 can be described approxi-
clusterq 7] whose orientation depends on the type of bound-mately, by a Langevin equation:

Ill. DIFFUSION IN AN ELASTIC GAS
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FIG. 5. ([r(t)—r(0)]?) as function oft using reflecting bound-
aries. Superpose@s in Fig. 1 are the results for system sizes: 20,
30, 40, 50, and 60.

dv;(t)
qr ~ i+,

(3.2
(Ii(mT(t"))=q8 ;6(t—t"),

wherei denotes the two directior andy. Integrating Eq.
(3.1), the dependence of the mean-square velocity on time
simply given by

v3(t)=v%(0)e 2"+ %(1—e’27‘). (3.2

In this paperv denotes the instantaneous velocity of one

PHYSICAL REVIEW E63 011301

ing the total kinetic energy of the systef" (which is given
by the initial velocity of each particjewe can easily calcu-
late the square velocity in the equilibrium stapé(e)
=q/vy (using the Boltzmann distribution law for elastic
gases Using the simulations to calculate?(t) for the s
particles for initial conditions which are very different from
the stationary state, i.ev?(0)#v?(*) and comparing with
Eqg. (3.3, we obtain the relaxation time for a bidneavy
particle(Fig. 7). Note that we are looking for agreement near
the equilibrium state, where E@3.1) is valid. Indeed the
dissipation termy must depend on both velocitieg andv?,
as we will show.
Equation(3.1) also gives the mean-square displacement
as a function of time,
_ 9)
Y

(1—e "2
X—

’)’2

(r()—r(0)1%=|v3
29
’}’2

2
+ t——j(l—e"t).
Y

(3.9

Comparing Eq(3.4) and Eq.(1.1) at large time, the coeffi-
cient of diffusion is seen to bB =v?()/2y. In Fig. 7, we
compare the theoretical mean square displacement3(,.
with the numerical one, obtained for the cé&&e= 3R,,. Note
ithat in Eq.(3.4) all the parameters are known. Clearly, the
agreement is very good. This confirms that even for a large
test particle, the motion is well described by the simple
Langevin equation. This observation, while reasonable, is
not trivial since the limited size of our system and the radius
of the particles are comparable to the mean-free-path.

We can now present a theoretical calculationypfvhich

particle andv? the mean-square velocity averaged over thegescribes dissipation in the Langevin equation for all pairs

different s trajectories. We can rewrite E§3.2) using the
mean square velocity in the equilibrium stat&«)=q/y:

v2(t)=v?(*) +[v*(0) —v*(=)]e” ", (3.3
where 1/ corresponds to the relaxation time.

For example, iR:>R,, or, equivalentlymg>my (mgy, is
the mass of the particle of radil; ) (see Fig. 6 1/y is
very large: the collision of with a light particleb will not
affect strongly the velocity 0. So a great number of colli-
sions is needed beforereaches its equilibrium state. Know-

FIG. 6. A particle of massng colliding with a particle of mass
m, : definition of the angle® and ¢.

(Rs,Rp)- This will allow us to compare the theoretical values
with the numerical ones as a function Rf.

The value ofy depends on both velocities; andvy,. To
estimate theoretically the value ¢f we consider the devia-
tion, due to a collision, of the partickmoving atvg in the
x direction. The dissipative term-yv; appearing in Eq.
(3.1), in thex direction, can therefore be formally written as

Ve X—Ug
—YUg=—\ ——— | WV
YUs Vs cUs»

whereu, is the velocity after the collision and, is the rate

of collision. The symbol ) in Eg. (3.5 corresponds to the
average over all collisions between tegarticle and theb
particles. To calculate the different terms, we proceed as fol-
lows. We consider the collision afwith a particleb moving

at a velocity Jb. The collision is characterized by two
angles:6, the angle betweerr{—r,) and thex axis, andg

the angle betweeﬁb and thex axis. Then, for such a colli-
sion, illustrated in Fig. 6, we can calculate theoretically
v.(6,9), the final velocity of thes particle.

-

(3.5
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(VL(0)-X),

2 N N
E[vscod ) —vpcog 0— @) Jug(6,¢)xde

02ﬁ5v[v5005(0)—vb005(0— )] |
(3.8

whereé, is the Heavyside function. We found for E@.8)
two solutions depending on the velocities. df<v,, we
have

(vi(6)- x>¢ 2+m Vs COF(0) +v4SiNP( )

B 2myv, cog 6)sin( 6,)
(7= 0p)(Ms+mp)

(3.9

for all & (0<6@=m) and with 6,=cos Tvscos@)lvy]. For
the second caseys>vy, there is a critical angle.

=cos Y(vy/vg), such that forr— §.< <+ 6, the colli-
sion does not take place. In this case the solution of E§)
is

(vi(6)- x>¢ — Mo v cog(6)

m+

+vssin2( 6) for 0<6<6,.,

(v4(6)-X),= —rr: v COS(6) +vgSir(6)

B 2mpvp, Cog 6)sin( )
(= 6p)(Ms+mp)

for O.<O0=m—0.. (3.10

FIG. 7. Comparison between numerical results and Langevinye call »(6) the mean relative loss of velocity,

approximationRs= 1.5 andR,=0.5. (a) Dependence of the mean-
squared velocity oy O: numerical result, full line: fit using ™2
according to Eq(3.2). (b) The mean-squared displacement, nu-

merical result, full line: Theoretical prediction according to Eq.

(3.3 using for y the value obtained frorta).

For elastic collisions, the projection 6@(0,@) on thex
direction is given by

-, - mMg— My
ve(0,0)-x= ms+mbvscosz(0)

2mb
ms+ my

v, cog f)cog 0— o)

+vgSire(6), (3.6)
with the collision taking place only if
vsC0q 0)—vpcog 6—¢)>0. (3.7

Integrating overp and taking into account Eq3.7) we can
write

(6)= <Ué(0)'x><p_vs,
Us
averaging only over the angle. In Fig. 8 we show(6) for
the particular cas®,=0.25 andR,=0.5, which means that
vs>vp. Note that in our calculation, the terms and vy,
correspond to the averaged values with respect to the appro-

priate Maxwellian distribution. To obtain the mean value
of v, we average by integrating numerically ouer

To conclude the calculation of the dissipative term
—yvs, We have to estimate, using EB.5), the collision
frequency that also depends on the velocities of the two par-
ticles. A similar calculation ofv can be dong10]. In the
stationary state, whene? andv? are constant and the distri-
butions of the velocities are Maxwellian, one can {GE]

wc=X\/;(Rs+Rb)d\/v§+vﬁ, (3.11

whered is the density ofb particles andy is a correction
factor, which corresponds to the local radial distribution
around thes particle.
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FIG. 8. v(0), the mean relative loss of energy per collision in R,
the 6 direction, forRg=0.25, R,=0.5, andv= 25. FIG. 9. Coefficient of diffusion for different values &;. Ry

=0.5. O: Numerical values obtained by simulation. Full line: the-

In Fig. 9, we compare, for different values &, the Oretical values calculated from?(=)/2y.

diffusion coefficient found from the simulation with the the-

oretical valuep?(=)/2y, predicted by the Langevin equation Fi is the collision force acting on a particle of massWe
combined with our analytical calculation of The theoreti- chose the random acceleratidf/m, to be independent of
cal calculation ofy agrees very well with the simulation the mass of the particle. It is given by a Gaussian noise of
results. We recall that 3/ corresponds to the characteristic varianceng.

time for the diffusive behavior. It is important to notice that At long time, the loss of energy due to collisions and the
y can be approximated by, only whenR.,<R,. Effec- gain due toF' balance each other such that the system
tively, the calculation foms~0 givesy=—1. Largerspar-  réaches a steady state out of equilibrium. It can be shown

ticles need to suffer more than one collision to lose memor)[15] that the velocity distribution in this steady state is well

of their previous condition. Fams~, 7 is found equal to described by a Maxwellian.
zero. Using these methods, we find for the elastic monodis-
perse case Rs=R;) that relaxation(decorrelation takes
place after about three collisions. In the stationary state energy loss and gain balance ex-

The agreement between numerical results and theoreticaktly. The energy loss per unit tinié for the s particle, can
predictions allows us to confirm our numerical algorithm.  pe expressed as

A. Stationary state

I'=P(mg,my) w,Mgv?, (4.2
IV. FORCED SYSTEM
| | o h h IwhereP(ms,mb) is the relative energy loss of partickedue
isions, a o, hat et be taken o aceaunt. Expermental, COlisions. Cleatly as fob, I must depend on the mass
' - =XP f the particle and on the two velocitieg andv,. On the

me;c_hamcal properties of grairiEestitlition ar_1d fr|ct|o_n €9 Gther hand, the gain of energy due the stochastic force is
efficienty and collision laws[12] are used in our simula-
tions. The collisions between grains and the walls are treated Imdv2(t+ 6t) —v2(t)]=mgy2at. 4.3
with the same inelastic properties. Due to dissipation, we

need to feed energy into the system to maintain the particleg, the steady state of the monodisperse sysféw Rq

agitated. To accomplish this, we choose random heating- R, andv?(e)=constan}, we find, using Eq(3.13), the
[13,14: At every time stepst we give a random accelera- following scaling forv2(e):

tion, »;(t), in both spatial directions to each particle. The

equation of motion can now be written formally as () (73)%3
(4.4
v2(®)x 7, .
m% =F{+F!
dt : v We checked these two scaling laws numericédige Fig. 1D

(4.1  and obtained the correct exponent 2/3 for the various coeffi-
. - 5 5 cients of restitution used in the contact laws. We have also
(Fi(OFj(t"))=m?6; jo(t—t") 75 verified the predicted dependence gnfor different values
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FIG. 10. (a) v?(=) vs 73 for different coefficients of restitution. (0) R,
O: €=087, €=04, p=025 A: €,=0.4, &=0.4, n=0.25, FIG. 11.(a) v*(=) vs R (R,=0.5).(b) Coefficient of diffusion
(b) v*() vs the mean time between collisions. D as a function oR,. O: Numerical values obtained from simula-

II.Eon. Full line: corresponding values given b¥()/2y. The insert

of R. The good agreement between theory and simulatio
%‘IOWSTr VS Ry.

indicates that we can describe the system by macroscop
continuous equations ibt<7.. As we explain elsewhere

[16], the termP(m,m) (in the monodisperse casis inde- B. Diffusion of one particle
pendent of mass and velocity, because all particles are iden-

tical. This value ofP(m,m) was found equal approximately : ; : -
to 0.145 for the mechanical properties corresponding t(511ethod explained in Sec. Il B. We consider here the bidis-

acetate spherdd2]. We can then, in the case of a monodis- PErS€ caséa single particle of radius in a sea of particles
perse system, predict the dependence of the mean-square Y47adiusR;). As we have not yet found a theoretical expres-
locity on the various parameters and, consequently, chara§ion forP(ms,my) for this case, we use for the mean-square
terize the stationary state. For the bidisperse case, theelocities the values obtained from the simulations, which
calculation is more complicated. Indeed the loss of energjre shown in Fig. 1(8). Note thatzg has been chosen such
depends on the two types of colliding particles and also orthat the value obﬁ is the same as in the previous section.
the different coefficients of restitution and friction introduced We see thab?(x=) first decreases withRs for Rs<R, but
in the collision laws. As we showl6] the dependence of then increases wheR,>R,,. Because of dissipation and the
P(mg,my) onvg/vy, is not trivial. random acceleration, the repartition of the energy with the
In this paper we limit ourselves to the effect of the ther-mass is no longer proportional tormd. In all cases it is
malization mode(or random forcg on the diffusion coeffi- possible to calculate the mean collision frequencysfarith
cient. To this end, we will compare in the following section Eq. (3.11) and the associated value with Eq.(3.5). We can
the simulation results fob with v2()/2y from the Lange- then calculate the relaxation time for all couples Rs,Rp)
vin equation. used. In Fig. 1lb) we show the diffusion coefficierd, and

To estimateD, we use reflecting boundaries and the same

011301-7
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the relaxation timer,—in the inset—as functions d&®;. The  probability of collision[see Eq(3.11]. For very small par-
behavior ofv?() strongly modifies the curve of, andD ticles, if one approaches relaxation by the time of a new
versusRs compared to the elastic case. Note that the relaxcollision, i.e., 7=—1, this calculation should be possible.
ation time represented in Fig. 11 clearly increase®as»-  |ndeed we can assume that the velocities before and after a
creases. collision are not correlated and have the same distribution
We have seen in the elastic case tBatv?/2y. In Fig.  (molecular chadgs We can then compute the mean-square
11(b), we show the numerical results for as a function of  displacement, knowing the dependence of the collision prob-
Rs and the corresponding values given b$/2y. One can  ability on the velocity[10]. With this assumption we im-
see clearly that the external noise modifies the dynamics gfrove the estimate db for the smallesR,. But for bigger
the granular gas and in particular the diffusion coefficint, particles we have seen that the velocities stay correlated over

The numerical value oD is found to be larger than that many collisions and we can no longer use molecular chaos.
obtained by the corresponding random walk. Indeed, at short

time, due to the random force?(t) is not constant. Between V. CONCLUSIONS
two collisionsv?(t) increases linearly with. Starting with
the equation of motion of particke(between two collisions We have presented here some general results about the
diffusion process in an agitated granular gas. We first
do;(t) showed that the boundary conditions used in the simulations
at i), 4.9 are of crucial importance. Indeed, periodic boundary condi-

tions introduce artificially strong temporal correlations that
and with the initial conditions;(0) andv;(0), we cancal-  alter the macroscopic properties of the gas. If we ensure that

culate mean-square displacement no correlations are induced by the algorithm, for example, by
) using reflecting boundaries, the numerical results obtained
(X =x(0)]%) for an elastic gas can be described very well by a Langevin
¢ t equation. We have presented a theoretical calculation of the
—< f dt1< vi(0)+f ni(ti)dti) relaxation time that allows us to predict the diffusion coeffi-
t1=0 0 cient in all cases studied. This was ropriori intuitive since

(4.6 path. Finally we have analyzed the influence of uniform

heating (a random acceleratipron dissipative gases. We

have shown that heating influences the dynamics at short

time. This is evident through the value of the diffusion coef-

5 ficient, which is different from that expected from the Lange-

@tg 47 vin description. We are now applying with success these
' ' results to the diffusion process in a granular mixture consist-

ing of two type of graingdiffering by mass or sizein equal

On the other hand, in the case of a random walkelastic  proportion.

collisions the mean-square displacement at short time scales

ast?. This difference explains the disagreement betwBen

andv?(=)/2y. As the velocity changes between two colli-

sions the probability of collision is increasing with time too.  This work was partially funded by the CNRS Programme

The calculation of the coefficient of diffusion is not easy in International de Cooperation Scientifique PICS No. 753 and

this case, due to the correlation between the velocity and thine Norwegian research council NFR.

t t, the radius of the patrticles is of the order of the mean-free-
xft Odt2<vi(0)+fo ni(té)dt§)>.

>=

In two dimensions, this yields for the interval between two
collisions

([r(t)—r(0)]?)=v2(0)t>+
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